Find the Maclaurin series for $f(x)$ using the definition of a Maclaurin series. Assume that f has a power series expansion. Do not show that $R_{n}(x) \rightarrow 0$. Also find the associated radius of convergence.

1) $f(x)=\cos x$
2) $f(x)=\sin 2 x$
3) $f(x)=(1+x)^{-3}$
4) $f(x)=x e^{x}$

Find the Taylor series for $f(x)$ centered at the given value of a. Assume that f has a power series expansion. Do not show that $R_{n}(x) \rightarrow 0$. Also find the associated radius of convergence.
5) $f(x)=1+x+x^{2}, \quad a=2$
6) $f(x)=e^{x}, \quad a=3$
7) $f(x)=\sin x, \quad a=\frac{\pi}{2}$
8) $f(x)=\frac{1}{\sqrt{x}}, \quad a=9$

Use a derived Maclaurin series to obtain the Maclaurin series for the given function. Also find the associated radius of convergence.
9) $f(x)=e^{-x / 2}$
10) $f(x)=x \tan ^{-1} x$
11) $f(x)=x \cos 2 x$
12) $f(x)=\sin ^{2} x \quad\left[\right.$ Hint: Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$.]
13) $f(x)=\left\{\begin{array}{cc}\frac{x-\sin x}{x^{3}} & \text { if } x \neq 0 \\ \frac{1}{6} & \text { if } x=0\end{array}\right.$

Evaluate the indefinite integral as an infinite series.
14) $\int x \cos \left(x^{3}\right) d x$
15) $\int \frac{\sin x}{x} d x$
16) $\int \frac{e^{x}-1}{x} d x$

Use series to evaluate the limit.
17) $\lim _{x \rightarrow 0} \frac{x-\tan ^{-1} x}{x^{3}}$
18) $\lim _{x \rightarrow 0} \frac{\sin x-x+\frac{1}{6} x^{3}}{x^{5}}$

Use multiplication or division of power series to find the first three nonzero terms in the Maclaurin series for each function.
19) $y=e^{-x^{2}} \cos x$
20) $y=\frac{x}{\sin x}$

Find the sum of the series.
21) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$
22) $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
23) $1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\cdots$

